The Power of Posture in the Management of Lumbar Spine and Pelvic Girdle Dysfunction

Improving Your Outcomes with a Comprehensive Approach

Day One
7:30:00 Registration
8:00:00 Theoretical Foundation for Neuromechanical Evaluation and Intervention (Lecture)
• Posture and biomechanics
• Posture and neuromechanics
• Additional models
9:30:10:30 Postural Control Model (Lecture/Lab)
• Model components
• Implications for examination, evaluation, and intervention
• Postural examination, evaluation
10:30:10:45 Break
10:45:12:00 Examination and Intervention for Lumbar/Pelvic Muscle Dysfunction (Lecture/Lab)
• Biomechanical examination and evaluation
• Neuromechanical examination and evaluation
• Integrated biomechanics and neuromechanical impairments and the postural control model
12:00:1:00 Lunch (on your own)
1:00:1:30 Lumbar Spine (continued)
• Integrated biomechanical and neuromechanical impairments and the postural control model
2:00:3:00 Examination, Evaluation of the Pelvic Girdle from a Postural Perspective (Lecture/Lab)
• Biomechanical examination and evaluation
• Neuromechanical examination and evaluation
3:00:3:15 Break
3:15:4:00 Pelvic Girdle (Continued)
• Integrated biomechanical and neuromechanical impairments and the postural control model
4:00:5:00 Principles of Intervention from a Postural Perspective (Lecture)
5:00:6:00 Lower Quarter Function Unit Integration (Lab)
• Systematic analysis of lower quarter function with dynamic posture

Day Two
8:00:8:30 Review and Questions (Lecture)
8:30:10:00 Janda’s Lower Crossed Model (Lecture/Lab)
• Implications for exam
• Implications for intervention
10:00:10:15 Break
10:15:12:00 Strategies for Improving Lumbopelvic and Hip Motion (Lecture/Lab)
• Biomechanical Interventions
• Increasing motion
• Increasing strength
• Neuromechanical Interventions
• Muscle Energy Technique
• SAL
• Neuromechanically organized mobilization
• Principles of motor learning and motor control
• Integration of PNF principles and the postural control model
• Rolling
• Gait
12:00:12:30 Lunch (on your own)
12:30:1:30 Intervention for Sympathetic Nervous System Dysfunction (Lecture)
• CRPS
• Central Sensitization
1:30:3:00 Posture and Balance: Role of the Vestibular System (Lecture/Lab)
• Explore the relationship between lumbarpelvic and vestibular system
• Specific assessment and intervention strategies
3:00:3:15 Break
3:15:3:45 Clinical Application and Summary (Lecture)
3:45:4:00 Questions/Answers
About the Educator

Robert Friberg, PT, PhD, CFMT is a professor in the Physical Therapy Program at Hardin-Simmons University. He teaches the kinesiology and orthopedics components of the curriculum. His clinical certification is the Certified Functional Manual Therapist® from the Institute of Physical Art. Dr. Friberg brings 35 years of clinical experience with a specialization in chronic pain associated with spinal dysfunction. His training includes experience with a variety of models for orthopedic practice. This experience led to a unique perspective for examination, evaluation and intervention of movement dysfunction associated with the spine. He has taught nationally on topics associated with the spine including manual therapy, motor control and stabilization. He has provided systematic spinal dysfunction training for national physical therapy groups. He has numerous clinical and research presentations at national meetings. His research interests include such topics as neuodynamics, the neuromechanical effects of posture, the relationship of reflexes in spinal dysfunction, and the role of muscle inhibition and facilitation in spinal movement dysfunction. Dr. Friberg currently has a private practice with consistent patient interaction.

Why You Should Attend This Course

Lumbar and pelvic girdle movement dysfunction represent a large component of physical therapy practice. Yet many struggle explaining how some patients improve and others do not. Utilizing an understanding of dynamic postural control is important for developing a perspective regarding the nature of movement dysfunction and is the key to improving outcomes. Movement dysfunction should be conceptualized as dysfunction within or between the body’s biomechanical and neuromechanical systems in the context of posture. Biomechanical dysfunction refers to abnormalities of the musculoskeletal system including the osteokinetics and arthrokinematics associated with creating movement. Neuromechanical dysfunction refers to abnormalities associated with the anatomy and physiology of the central, peripheral, and autonomic nervous systems influencing movement. The effective intervention for lumbar pelvic dysfunction must be organized around an understanding of static and dynamic posture. Intervention should integrate the anatomic/physiologic components of both biomechanic and neuromechanic systems in the context of postural control.

This two day advanced course provides an understanding of the power and influence of posture on lumbar pelvic motion. It integrates the relevant biomechanic and neuromechanic components and a posture control model for examination, evaluation, and intervention. The information presented in this course enables the clinician to utilize a new representation of the underlying mechanisms that contribute to lower quarter movement dysfunction. Much lumbar pelvic dysfunction goes unrecognized secondary to the traditional biomechanical examination and evaluation paradigms. Content for this course includes significant discussion of the scientific basis and rationale for a postural control model basis for examination, evaluation, and intervention.

The course incorporates lecture with substantial laboratory experiences. Laboratory sessions enable the participants to integrate principles of postural control with the usual impairments found with lumbar pelvic movement dysfunction. This includes not only the musculoskeletal system but all three components of the nervous system. Additionally, the role of muscle facilitation and inhibition, the vestibular system and balance, and neuroplasticity are engaged.

The strategies developed for examination and intervention developed in the context of dynamic posture theory in this course work well with traditional approaches used for intervention. Course information is immediately relevant and applicable in the clinical setting. Additionally, the concept and principle learned in this workshop transfer to all neuromusculoskeletal movement dysfunction. This course is applicable for PT, PTA, and AT’s.

Course Objectives

Upon completion of this course, participants will be able to:
- Describe the theoretical foundation for a neuromechanical evaluation.
- Describe the components of a postural control model and apply these concepts a biomechanic and neuromechanic examination for lumbar pelvic dysfunction.
- Design a program that incorporates evidence based principles of postural motor control with examination, evaluation, and intervention of lumbar pelvic dysfunction.
- Design a comprehensive program to include balance and postural examination, and treatment to enhance lumbar pelvic function.
- Perform biomechanical, neuromechanical and PNF techniques when in the management of lumbar spine and pelvic girdle dysfunction.
- Explain the role of the vestibular system in normal and dysfunctional posture and perform specific examination and treatment techniques to enhance the lumbar pelvic and vestibular system synergy.
- Design a program that utilizes the principles of Janda’s Lower-Crossed model for examination, evaluation, and intervention of dynamic postural dysfunction.
- Develop a comprehensive treatment approach to improve functional outcomes for lumbar pelvic movement dysfunction.

Pre-Approved for Physical Therapists, and Physical Therapy Assistants

Name
Profession
Address
City, State, Zip
Phone (required)
Fax (required)
Credit Card
Exp.date
e-mail (required)
Location of attendance

Register Online! www.healthclick.com